Generare colors RGB chiaramente diversi nei grafici

Quando generi grafici e mostri insiemi di dati diversi, di solito è una buona idea distinguere gli insiemi per colore. Quindi una linea è rossa e la successiva è verde e così via. Il problema è quindi che quando il numero di set di dati è sconosciuto, è necessario generare questi colors casualmente e spesso si trovano molto vicini tra loro (verde, verde chiaro, ad esempio).

Qualche idea su come questo potrebbe essere risolto e come sarebbe ansible generare colors distintamente diversi?

Sarei fantastico se qualche esempio (sentiti libero di discutere il problema e la soluzione senza esempi se lo trovi più facile) fossero in C # e nei colors basati su RGB.

Hai tre canali di colore da 0 a 255 R, G e B.

Prima passare

0, 0, 255 0, 255, 0 255, 0, 0 

Quindi passare attraverso

 0, 255, 255 255, 0, 255 255, 255, 0 

Quindi dividere per 2 => 128 e ricominciare:

 0, 0, 128 0, 128, 0 128, 0, 0 0, 128, 128 128, 0, 128 128, 128, 0 

Dividi per 2 => 64

La prossima volta aggiungi 64 a 128 => 192

Segui lo schema.

Semplice da programmare e ti offre colors abbastanza distinti.

EDIT: richiesta di codice di esempio

Inoltre, aggiungendo il modello aggiuntivo come segue se il grigio è un colore accettabile:

 255, 255, 255 128, 128, 128 

Ci sono diversi modi in cui puoi gestire la generazione di questi in codice.

La via facile

Se puoi garantire che non avrai mai bisogno di più di un numero fisso di colors, basta generare una serie di colors seguendo questo modello e utilizzare quelli:

  static string[] ColourValues = new string[] { "FF0000", "00FF00", "0000FF", "FFFF00", "FF00FF", "00FFFF", "000000", "800000", "008000", "000080", "808000", "800080", "008080", "808080", "C00000", "00C000", "0000C0", "C0C000", "C000C0", "00C0C0", "C0C0C0", "400000", "004000", "000040", "404000", "400040", "004040", "404040", "200000", "002000", "000020", "202000", "200020", "002020", "202020", "600000", "006000", "000060", "606000", "600060", "006060", "606060", "A00000", "00A000", "0000A0", "A0A000", "A000A0", "00A0A0", "A0A0A0", "E00000", "00E000", "0000E0", "E0E000", "E000E0", "00E0E0", "E0E0E0", }; 

La via difficile

Se non sai quanti colors hai bisogno, il codice seguente genererà fino a 896 colors usando questo modello. (896 = 256 * 7/2) 256 è lo spazio colore per canale, abbiamo 7 modelli e ci fermiamo prima di arrivare ai colors separati da un solo valore di colore.

Probabilmente ho lavorato più duramente a questo codice di quanto ne avessi bisogno. Innanzitutto, c’è un generatore di intensità che parte da 255, quindi genera i valori secondo lo schema sopra descritto. Il generatore di pattern scorre solo attraverso i sette modelli di colore.

 using System; class Program { static void Main(string[] args) { ColourGenerator generator = new ColourGenerator(); for (int i = 0; i < 896; i++) { Console.WriteLine(string.Format("{0}: {1}", i, generator.NextColour())); } } } public class ColourGenerator { private int index = 0; private IntensityGenerator intensityGenerator = new IntensityGenerator(); public string NextColour() { string colour = string.Format(PatternGenerator.NextPattern(index), intensityGenerator.NextIntensity(index)); index++; return colour; } } public class PatternGenerator { public static string NextPattern(int index) { switch (index % 7) { case 0: return "{0}0000"; case 1: return "00{0}00"; case 2: return "0000{0}"; case 3: return "{0}{0}00"; case 4: return "{0}00{0}"; case 5: return "00{0}{0}"; case 6: return "{0}{0}{0}"; default: throw new Exception("Math error"); } } } public class IntensityGenerator { private IntensityValueWalker walker; private int current; public string NextIntensity(int index) { if (index == 0) { current = 255; } else if (index % 7 == 0) { if (walker == null) { walker = new IntensityValueWalker(); } else { walker.MoveNext(); } current = walker.Current.Value; } string currentText = current.ToString("X"); if (currentText.Length == 1) currentText = "0" + currentText; return currentText; } } public class IntensityValue { private IntensityValue mChildA; private IntensityValue mChildB; public IntensityValue(IntensityValue parent, int value, int level) { if (level > 7) throw new Exception("There are no more colours left"); Value = value; Parent = parent; Level = level; } public int Level { get; set; } public int Value { get; set; } public IntensityValue Parent { get; set; } public IntensityValue ChildA { get { return mChildA ?? (mChildA = new IntensityValue(this, this.Value - (1<<(7-Level)), Level+1)); } } public IntensityValue ChildB { get { return mChildB ?? (mChildB = new IntensityValue(this, Value + (1<<(7-Level)), Level+1)); } } } public class IntensityValueWalker { public IntensityValueWalker() { Current = new IntensityValue(null, 1<<7, 1); } public IntensityValue Current { get; set; } public void MoveNext() { if (Current.Parent == null) { Current = Current.ChildA; } else if (Current.Parent.ChildA == Current) { Current = Current.Parent.ChildB; } else { int levelsUp = 1; Current = Current.Parent; while (Current.Parent != null && Current == Current.Parent.ChildB) { Current = Current.Parent; levelsUp++; } if (Current.Parent != null) { Current = Current.Parent.ChildB; } else { levelsUp++; } for (int i = 0; i < levelsUp; i++) { Current = Current.ChildA; } } } } 

Per implementare una lista di varianti dove i tuoi colors vanno, 255 quindi usa tutte le possibilità di questo, poi aggiungi 0 e tutti i pattern RGB con quei due valori. Quindi aggiungi 128 e tutte le combinazioni RGB con quelle. Quindi 64. Quindi 192. Ecc.

In Java,

 public Color getColor(int i) { return new Color(getRGB(i)); } public int getRGB(int index) { int[] p = getPattern(index); return getElement(p[0]) << 16 | getElement(p[1]) << 8 | getElement(p[2]); } public int getElement(int index) { int value = index - 1; int v = 0; for (int i = 0; i < 8; i++) { v = v | (value & 1); v <<= 1; value >>= 1; } v >>= 1; return v & 0xFF; } public int[] getPattern(int index) { int n = (int)Math.cbrt(index); index -= (n*n*n); int[] p = new int[3]; Arrays.fill(p,n); if (index == 0) { return p; } index--; int v = index % 3; index = index / 3; if (index < n) { p[v] = index % n; return p; } index -= n; p[v ] = index / n; p[++v % 3] = index % n; return p; } 

Ciò produrrà modelli di quel tipo all'infinito (2 ^ 24) nel futuro. Tuttavia, dopo un centinaio di punti probabilmente non vedrai molta differenza tra un colore con 0 o 32 nella posizione del blu.

Potrebbe essere meglio normalizzare questo in uno spazio cromatico diverso. Spazio colore LAB ad esempio con i valori L, A, B normalizzati e convertiti. Quindi la nitidezza del colore viene spinta attraverso qualcosa di più simile all'occhio umano.

getElement () inverte l'endian di un numero a 8 bit e inizia il conteggio da -1 piuttosto che da 0 (masking con 255). Quindi va 255,0,127,192,64, ... man mano che il numero aumenta, sposta i bit meno e meno significativi, suddividendo il numero.

getPattern () determina quale dovrebbe essere l'elemento più significativo nel modello (è la radice cubica). Quindi procede per abbattere i 3N² + 3N + 1 diversi pattern che coinvolgono quell'elemento più significativo.

Questo algoritmo produrrà (primi 128 valori):

 #FFFFFF #000000 #FF0000 #00FF00 #0000FF #FFFF00 #00FFFF #FF00FF #808080 #FF8080 #80FF80 #8080FF #008080 #800080 #808000 #FFFF80 #80FFFF #FF80FF #FF0080 #80FF00 #0080FF #00FF80 #8000FF #FF8000 #000080 #800000 #008000 #404040 #FF4040 #40FF40 #4040FF #004040 #400040 #404000 #804040 #408040 #404080 #FFFF40 #40FFFF #FF40FF #FF0040 #40FF00 #0040FF #FF8040 #40FF80 #8040FF #00FF40 #4000FF #FF4000 #000040 #400000 #004000 #008040 #400080 #804000 #80FF40 #4080FF #FF4080 #800040 #408000 #004080 #808040 #408080 #804080 #C0C0C0 #FFC0C0 #C0FFC0 #C0C0FF #00C0C0 #C000C0 #C0C000 #80C0C0 #C080C0 #C0C080 #40C0C0 #C040C0 #C0C040 #FFFFC0 #C0FFFF #FFC0FF #FF00C0 #C0FF00 #00C0FF #FF80C0 #C0FF80 #80C0FF #FF40C0 #C0FF40 #40C0FF #00FFC0 #C000FF #FFC000 #0000C0 #C00000 #00C000 #0080C0 #C00080 #80C000 #0040C0 #C00040 #40C000 #80FFC0 #C080FF #FFC080 #8000C0 #C08000 #00C080 #8080C0 #C08080 #80C080 #8040C0 #C08040 #40C080 #40FFC0 #C040FF #FFC040 #4000C0 #C04000 #00C040 #4080C0 #C04080 #80C040 #4040C0 #C04040 #40C040 #202020 #FF2020 #20FF20 

Leggi da sinistra a destra, dall'alto in basso. 729 colors (9³). Quindi tutti i modelli fino a n = 9. Noterai la velocità con cui iniziano a scontrarsi. Ci sono solo tante varianti WRGBCYMK. E questa soluzione, mentre intelligentemente fondamentalmente fa solo diverse tonalità di colors primari.

Color Grid, 729 16x16

Gran parte dello scontro è dovuto al verde e alla somiglianza della maggior parte dei verdi con la maggior parte delle persone. La richiesta è che ognuno sia al massimo diverso all'inizio piuttosto che solo abbastanza diverso da non essere dello stesso colore. E difetti di base nell'idea che si traducono in modelli di colors primari e tonalità identiche.


Usando la CIELab2000 Color Space e Distance Routine per selezionare in modo casuale e provare 10k di colors diversi e trovare la distanza minima al massimo dai colors precedenti, (praticamente la definizione della richiesta) evita lo scontro più lungo della soluzione di cui sopra:

Distanza di colore massima

Quale potrebbe essere chiamato semplicemente un elenco statico per la Via Facile. Ci sono voluti un'ora e mezza per generare 729 voci:

 #9BC4E5 #310106 #04640D #FEFB0A #FB5514 #E115C0 #00587F #0BC582 #FEB8C8 #9E8317 #01190F #847D81 #58018B #B70639 #703B01 #F7F1DF #118B8A #4AFEFA #FCB164 #796EE6 #000D2C #53495F #F95475 #61FC03 #5D9608 #DE98FD #98A088 #4F584E #248AD0 #5C5300 #9F6551 #BCFEC6 #932C70 #2B1B04 #B5AFC4 #D4C67A #AE7AA1 #C2A393 #0232FD #6A3A35 #BA6801 #168E5C #16C0D0 #C62100 #014347 #233809 #42083B #82785D #023087 #B7DAD2 #196956 #8C41BB #ECEDFE #2B2D32 #94C661 #F8907D #895E6B #788E95 #FB6AB8 #576094 #DB1474 #8489AE #860E04 #FBC206 #6EAB9B #F2CDFE #645341 #760035 #647A41 #496E76 #E3F894 #F9D7CD #876128 #A1A711 #01FB92 #FD0F31 #BE8485 #C660FB #120104 #D48958 #05AEE8 #C3C1BE #9F98F8 #1167D9 #D19012 #B7D802 #826392 #5E7A6A #B29869 #1D0051 #8BE7FC #76E0C1 #BACFA7 #11BA09 #462C36 #65407D #491803 #F5D2A8 #03422C #72A46E #128EAC #47545E #B95C69 #A14D12 #C4C8FA #372A55 #3F3610 #D3A2C6 #719FFA #0D841A #4C5B32 #9DB3B7 #B14F8F #747103 #9F816D #D26A5B #8B934B #F98500 #002935 #D7F3FE #FCB899 #1C0720 #6B5F61 #F98A9D #9B72C2 #A6919D #2C3729 #D7C70B #9F9992 #EFFBD0 #FDE2F1 #923A52 #5140A7 #BC14FD #6D706C #0007C4 #C6A62F #000C14 #904431 #600013 #1C1B08 #693955 #5E7C99 #6C6E82 #D0AFB3 #493B36 #AC93CE #C4BA9C #09C4B8 #69A5B8 #374869 #F868ED #E70850 #C04841 #C36333 #700366 #8A7A93 #52351D #B503A2 #D17190 #A0F086 #7B41FC #0EA64F #017499 #08A882 #7300CD #A9B074 #4E6301 #AB7E41 #547FF4 #134DAC #FDEC87 #056164 #FE12A0 #C264BA #939DAD #0BCDFA #277442 #1BDE4A #826958 #977678 #BAFCE8 #7D8475 #8CCF95 #726638 #FEA8EB #EAFEF0 #6B9279 #C2FE4B #304041 #1EA6A7 #022403 #062A47 #054B17 #F4C673 #02FEC7 #9DBAA8 #775551 #835536 #565BCC #80D7D2 #7AD607 #696F54 #87089A #664B19 #242235 #7DB00D #BFC7D6 #D5A97E #433F31 #311A18 #FDB2AB #D586C9 #7A5FB1 #32544A #EFE3AF #859D96 #2B8570 #8B282D #E16A07 #4B0125 #021083 #114558 #F707F9 #C78571 #7FB9BC #FC7F4B #8D4A92 #6B3119 #884F74 #994E4F #9DA9D3 #867B40 #CED5C4 #1CA2FE #D9C5B4 #FEAA00 #507B01 #A7D0DB #53858D #588F4A #FBEEEC #FC93C1 #D7CCD4 #3E4A02 #C8B1E2 #7A8B62 #9A5AE2 #896C04 #B1121C #402D7D #858701 #D498A6 #B484EF #5C474C #067881 #C0F9FC #726075 #8D3101 #6C93B2 #A26B3F #AA6582 #4F4C4F #5A563D #E83005 #32492D #FC7272 #B9C457 #552A5B #B50464 #616E79 #DCE2E4 #CF8028 #0AE2F0 #4F1E24 #FD5E46 #4B694E #C5DEFC #5DC262 #022D26 #7776B8 #FD9F66 #B049B8 #988F73 #BE385A #2B2126 #54805A #141B55 #67C09B #456989 #DDC1D9 #166175 #C1E29C #A397B5 #2E2922 #ABDBBE #B4A6A8 #A06B07 #A99949 #0A0618 #B14E2E #60557D #D4A556 #82A752 #4A005B #3C404F #6E6657 #7E8BD5 #1275B8 #D79E92 #230735 #661849 #7A8391 #FE0F7B #B0B6A9 #629591 #D05591 #97B68A #97939A #035E38 #53E19E #DFD7F9 #02436C #525A72 #059A0E #3E736C #AC8E87 #D10C92 #B9906E #66BDFD #C0ABFD #0734BC #341224 #8AAAC1 #0E0B03 #414522 #6A2F3E #2D9A8A #4568FD #FDE6D2 #FEE007 #9A003C #AC8190 #DCDD58 #B7903D #1F2927 #9B02E6 #827A71 #878B8A #8F724F #AC4B70 #37233B #385559 #F347C7 #9DB4FE #D57179 #DE505A #37F7DD #503500 #1C2401 #DD0323 #00A4BA #955602 #FA5B94 #AA766C #B8E067 #6A807E #4D2E27 #73BED7 #D7BC8A #614539 #526861 #716D96 #829A17 #210109 #436C2D #784955 #987BAB #8F0152 #0452FA #B67757 #A1659F #D4F8D8 #48416F #DEBAAF #A5A9AA #8C6B83 #403740 #70872B #D9744D #151E2C #5C5E5E #B47C02 #F4CBD0 #E49D7D #DD9954 #B0A18B #2B5308 #EDFD64 #9D72FC #2A3351 #68496C #C94801 #EED05E #826F6D #E0D6BB #5B6DB4 #662F98 #0C97CA #C1CA89 #755A03 #DFA619 #CD70A8 #BBC9C7 #F6BCE3 #A16462 #01D0AA #87C6B3 #E7B2FA #D85379 #643AD5 #D18AAE #13FD5E #B3E3FD #C977DB #C1A7BB #9286CB #A19B6A #8FFED7 #6B1F17 #DF503A #10DDD7 #9A8457 #60672F #7D327D #DD8782 #59AC42 #82FDB8 #FC8AE7 #909F6F #B691AE #B811CD #BCB24E #CB4BD9 #2B2304 #AA9501 #5D5096 #403221 #F9FAB4 #3990FC #70DE7F #95857F #84A385 #50996F #797B53 #7B6142 #81D5FE #9CC428 #0B0438 #3E2005 #4B7C91 #523854 #005EA9 #F0C7AD #ACB799 #FAC08E #502239 #BFAB6A #2B3C48 #0EB5D8 #8A5647 #49AF74 #067AE9 #F19509 #554628 #4426A4 #7352C9 #3F4287 #8B655E #B480BF #9BA74C #5F514C #CC9BDC #BA7942 #1C4138 #3C3C3A #29B09C #02923F #701D2B #36577C #3F00EA #3D959E #440601 #8AEFF3 #6D442A #BEB1A8 #A11C02 #8383FE #A73839 #DBDE8A #0283B3 #888597 #32592E #F5FDFA #01191B #AC707A #B6BD03 #027B59 #7B4F08 #957737 #83727D #035543 #6F7E64 #C39999 #52847A #925AAC #77CEDA #516369 #E0D7D0 #FCDD97 #555424 #96E6B6 #85BB74 #5E2074 #BD5E48 #9BEE53 #1A351E #3148CD #71575F #69A6D0 #391A62 #E79EA0 #1C0F03 #1B1636 #D20C39 #765396 #7402FE #447F3E #CFD0A8 #3A2600 #685AFC #A4B3C6 #534302 #9AA097 #FD5154 #9B0085 #403956 #80A1A7 #6E7A9A #605E6A #86F0E2 #5A2B01 #7E3D43 #ED823B #32331B #424837 #40755E #524F48 #B75807 #B40080 #5B8CA1 #FDCFE5 #CCFEAC #755847 #CAB296 #C0D6E3 #2D7100 #D5E4DE #362823 #69C63C #AC3801 #163132 #4750A6 #61B8B2 #FCC4B5 #DEBA2E #FE0449 #737930 #8470AB #687D87 #D7B760 #6AAB86 #8398B8 #B7B6BF #92C4A1 #B6084F #853B5E #D0BCBA #92826D #C6DDC6 #BE5F5A #280021 #435743 #874514 #63675A #E97963 #8F9C9E #985262 #909081 #023508 #DDADBF #D78493 #363900 #5B0120 #603C47 #C3955D #AC61CB #FD7BA7 #716C74 #8D895B #071001 #82B4F2 #B6BBD8 #71887A #8B9FE3 #997158 #65A6AB #2E3067 #321301 #FEECCB #3B5E72 #C8FE85 #A1DCDF #CB49A6 #B1C5E4 #3E5EB0 #88AEA7 #04504C #975232 #6786B9 #068797 #9A98C4 #A1C3C2 #1C3967 #DBEA07 #789658 #E7E7C6 #A6C886 #957F89 #752E62 #171518 #A75648 #01D26F #0F535D #047E76 #C54754 #5D6E88 #AB9483 #803B99 #FA9C48 #4A8A22 #654A5C #965F86 #9D0CBB #A0E8A0 #D3DBFA #FD908F #AEAB85 #A13B89 #F1B350 #066898 #948A42 #C8BEDE #19252C #7046AA #E1EEFC #3E6557 #CD3F26 #2B1925 #DDAD94 #C0B109 #37DFFE #039676 #907468 #9E86A5 #3A1B49 #BEE5B7 #C29501 #9E3645 #DC580A #645631 #444B4B #FD1A63 #DDE5AE #887800 #36006F #3A6260 #784637 #FEA0B7 #A3E0D2 #6D6316 #5F7172 #B99EC7 #777A7E #E0FEFD #E16DC5 #01344B #F8F8FC #9F9FB5 #182617 #FE3D21 #7D0017 #822F21 #EFD9DC #6E68C4 #35473E #007523 #767667 #A6825D #83DC5F #227285 #A95E34 #526172 #979730 #756F6D #716259 #E8B2B5 #B6C9BB #9078DA #4F326E #B2387B #888C6F #314B5F #E5B678 #38A3C6 #586148 #5C515B #CDCCE1 #C8977F 

L'uso della forza bruta per (testare tutti i 16.777.216 colors RGB tramite CIELab Delta2000 / Starting with black) produce una serie. Che inizia a scontrarsi intorno ai 26, ma potrebbe arrivare a 30 o 40 con l'ispezione visiva e il drop manuale (cosa che non può essere fatta con un computer). Quindi, facendo il massimo assoluto, a livello di programmazione è ansible creare solo una dozzina di colors distinti. Una lista discreta è la soluzione migliore. Otterrai più colors discreti con un elenco rispetto a quello che avresti programmaticamente. Il modo più semplice è la soluzione migliore, iniziare a mescolare e abbinare altri modi per alterare i dati rispetto al colore.

Massimo diverso

 #000000 #00FF00 #0000FF #FF0000 #01FFFE #FFA6FE #FFDB66 #006401 #010067 #95003A #007DB5 #FF00F6 #FFEEE8 #774D00 #90FB92 #0076FF #D5FF00 #FF937E #6A826C #FF029D #FE8900 #7A4782 #7E2DD2 #85A900 #FF0056 #A42400 #00AE7E #683D3B #BDC6FF #263400 #BDD393 #00B917 #9E008E #001544 #C28C9F #FF74A3 #01D0FF #004754 #E56FFE #788231 #0E4CA1 #91D0CB #BE9970 #968AE8 #BB8800 #43002C #DEFF74 #00FFC6 #FFE502 #620E00 #008F9C #98FF52 #7544B1 #B500FF #00FF78 #FF6E41 #005F39 #6B6882 #5FAD4E #A75740 #A5FFD2 #FFB167 #009BFF #E85EBE 

Aggiornamento: l'ho continuato per circa un mese quindi, a 1024 forza bruta. 1024

 public static final String[] indexcolors = new String[]{ "#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059", "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87", "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80", "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100", "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F", "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09", "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66", "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C", "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81", "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00", "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700", "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329", "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C", "#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800", "#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51", "#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58", "#7A7BFF", "#D68E01", "#353339", "#78AFA1", "#FEB2C6", "#75797C", "#837393", "#943A4D", "#B5F4FF", "#D2DCD5", "#9556BD", "#6A714A", "#001325", "#02525F", "#0AA3F7", "#E98176", "#DBD5DD", "#5EBCD1", "#3D4F44", "#7E6405", "#02684E", "#962B75", "#8D8546", "#9695C5", "#E773CE", "#D86A78", "#3E89BE", "#CA834E", "#518A87", "#5B113C", "#55813B", "#E704C4", "#00005F", "#A97399", "#4B8160", "#59738A", "#FF5DA7", "#F7C9BF", "#643127", "#513A01", "#6B94AA", "#51A058", "#A45B02", "#1D1702", "#E20027", "#E7AB63", "#4C6001", "#9C6966", "#64547B", "#97979E", "#006A66", "#391406", "#F4D749", "#0045D2", "#006C31", "#DDB6D0", "#7C6571", "#9FB2A4", "#00D891", "#15A08A", "#BC65E9", "#FFFFFE", "#C6DC99", "#203B3C", "#671190", "#6B3A64", "#F5E1FF", "#FFA0F2", "#CCAA35", "#374527", "#8BB400", "#797868", "#C6005A", "#3B000A", "#C86240", "#29607C", "#402334", "#7D5A44", "#CCB87C", "#B88183", "#AA5199", "#B5D6C3", "#A38469", "#9F94F0", "#A74571", "#B894A6", "#71BB8C", "#00B433", "#789EC9", "#6D80BA", "#953F00", "#5EFF03", "#E4FFFC", "#1BE177", "#BCB1E5", "#76912F", "#003109", "#0060CD", "#D20096", "#895563", "#29201D", "#5B3213", "#A76F42", "#89412E", "#1A3A2A", "#494B5A", "#A88C85", "#F4ABAA", "#A3F3AB", "#00C6C8", "#EA8B66", "#958A9F", "#BDC9D2", "#9FA064", "#BE4700", "#658188", "#83A485", "#453C23", "#47675D", "#3A3F00", "#061203", "#DFFB71", "#868E7E", "#98D058", "#6C8F7D", "#D7BFC2", "#3C3E6E", "#D83D66", "#2F5D9B", "#6C5E46", "#D25B88", "#5B656C", "#00B57F", "#545C46", "#866097", "#365D25", "#252F99", "#00CCFF", "#674E60", "#FC009C", "#92896B", "#1E2324", "#DEC9B2", "#9D4948", "#85ABB4", "#342142", "#D09685", "#A4ACAC", "#00FFFF", "#AE9C86", "#742A33", "#0E72C5", "#AFD8EC", "#C064B9", "#91028C", "#FEEDBF", "#FFB789", "#9CB8E4", "#AFFFD1", "#2A364C", "#4F4A43", "#647095", "#34BBFF", "#807781", "#920003", "#B3A5A7", "#018615", "#F1FFC8", "#976F5C", "#FF3BC1", "#FF5F6B", "#077D84", "#F56D93", "#5771DA", "#4E1E2A", "#830055", "#02D346", "#BE452D", "#00905E", "#BE0028", "#6E96E3", "#007699", "#FEC96D", "#9C6A7D", "#3FA1B8", "#893DE3", "#79B4D6", "#7FD4D9", "#6751BB", "#B28D2D", "#E27A05", "#DD9CB8", "#AABC7A", "#980034", "#561A02", "#8F7F00", "#635000", "#CD7DAE", "#8A5E2D", "#FFB3E1", "#6B6466", "#C6D300", "#0100E2", "#88EC69", "#8FCCBE", "#21001C", "#511F4D", "#E3F6E3", "#FF8EB1", "#6B4F29", "#A37F46", "#6A5950", "#1F2A1A", "#04784D", "#101835", "#E6E0D0", "#FF74FE", "#00A45F", "#8F5DF8", "#4B0059", "#412F23", "#D8939E", "#DB9D72", "#604143", "#B5BACE", "#989EB7", "#D2C4DB", "#A587AF", "#77D796", "#7F8C94", "#FF9B03", "#555196", "#31DDAE", "#74B671", "#802647", "#2A373F", "#014A68", "#696628", "#4C7B6D", "#002C27", "#7A4522", "#3B5859", "#E5D381", "#FFF3FF", "#679FA0", "#261300", "#2C5742", "#9131AF", "#AF5D88", "#C7706A", "#61AB1F", "#8CF2D4", "#C5D9B8", "#9FFFFB", "#BF45CC", "#493941", "#863B60", "#B90076", "#003177", "#C582D2", "#C1B394", "#602B70", "#887868", "#BABFB0", "#030012", "#D1ACFE", "#7FDEFE", "#4B5C71", "#A3A097", "#E66D53", "#637B5D", "#92BEA5", "#00F8B3", "#BEDDFF", "#3DB5A7", "#DD3248", "#B6E4DE", "#427745", "#598C5A", "#B94C59", "#8181D5", "#94888B", "#FED6BD", "#536D31", "#6EFF92", "#E4E8FF", "#20E200", "#FFD0F2", "#4C83A1", "#BD7322", "#915C4E", "#8C4787", "#025117", "#A2AA45", "#2D1B21", "#A9DDB0", "#FF4F78", "#528500", "#009A2E", "#17FCE4", "#71555A", "#525D82", "#00195A", "#967874", "#555558", "#0B212C", "#1E202B", "#EFBFC4", "#6F9755", "#6F7586", "#501D1D", "#372D00", "#741D16", "#5EB393", "#B5B400", "#DD4A38", "#363DFF", "#AD6552", "#6635AF", "#836BBA", "#98AA7F", "#464836", "#322C3E", "#7CB9BA", "#5B6965", "#707D3D", "#7A001D", "#6E4636", "#443A38", "#AE81FF", "#489079", "#897334", "#009087", "#DA713C", "#361618", "#FF6F01", "#006679", "#370E77", "#4B3A83", "#C9E2E6", "#C44170", "#FF4526", "#73BE54", "#C4DF72", "#ADFF60", "#00447D", "#DCCEC9", "#BD9479", "#656E5B", "#EC5200", "#FF6EC2", "#7A617E", "#DDAEA2", "#77837F", "#A53327", "#608EFF", "#B599D7", "#A50149", "#4E0025", "#C9B1A9", "#03919A", "#1B2A25", "#E500F1", "#982E0B", "#B67180", "#E05859", "#006039", "#578F9B", "#305230", "#CE934C", "#B3C2BE", "#C0BAC0", "#B506D3", "#170C10", "#4C534F", "#224451", "#3E4141", "#78726D", "#B6602B", "#200441", "#DDB588", "#497200", "#C5AAB6", "#033C61", "#71B2F5", "#A9E088", "#4979B0", "#A2C3DF", "#784149", "#2D2B17", "#3E0E2F", "#57344C", "#0091BE", "#E451D1", "#4B4B6A", "#5C011A", "#7C8060", "#FF9491", "#4C325D", "#005C8B", "#E5FDA4", "#68D1B6", "#032641", "#140023", "#8683A9", "#CFFF00", "#A72C3E", "#34475A", "#B1BB9A", "#B4A04F", "#8D918E", "#A168A6", "#813D3A", "#425218", "#DA8386", "#776133", "#563930", "#8498AE", "#90C1D3", "#B5666B", "#9B585E", "#856465", "#AD7C90", "#E2BC00", "#E3AAE0", "#B2C2FE", "#FD0039", "#009B75", "#FFF46D", "#E87EAC", "#DFE3E6", "#848590", "#AA9297", "#83A193", "#577977", "#3E7158", "#C64289", "#EA0072", "#C4A8CB", "#55C899", "#E78FCF", "#004547", "#F6E2E3", "#966716", "#378FDB", "#435E6A", "#DA0004", "#1B000F", "#5B9C8F", "#6E2B52", "#011115", "#E3E8C4", "#AE3B85", "#EA1CA9", "#FF9E6B", "#457D8B", "#92678B", "#00CDBB", "#9CCC04", "#002E38", "#96C57F", "#CFF6B4", "#492818", "#766E52", "#20370E", "#E3D19F", "#2E3C30", "#B2EACE", "#F3BDA4", "#A24E3D", "#976FD9", "#8C9FA8", "#7C2B73", "#4E5F37", "#5D5462", "#90956F", "#6AA776", "#DBCBF6", "#DA71FF", "#987C95", "#52323C", "#BB3C42", "#584D39", "#4FC15F", "#A2B9C1", "#79DB21", "#1D5958", "#BD744E", "#160B00", "#20221A", "#6B8295", "#00E0E4", "#102401", "#1B782A", "#DAA9B5", "#B0415D", "#859253", "#97A094", "#06E3C4", "#47688C", "#7C6755", "#075C00", "#7560D5", "#7D9F00", "#C36D96", "#4D913E", "#5F4276", "#FCE4C8", "#303052", "#4F381B", "#E5A532", "#706690", "#AA9A92", "#237363", "#73013E", "#FF9079", "#A79A74", "#029BDB", "#FF0169", "#C7D2E7", "#CA8869", "#80FFCD", "#BB1F69", "#90B0AB", "#7D74A9", "#FCC7DB", "#99375B", "#00AB4D", "#ABAED1", "#BE9D91", "#E6E5A7", "#332C22", "#DD587B", "#F5FFF7", "#5D3033", "#6D3800", "#FF0020", "#B57BB3", "#D7FFE6", "#C535A9", "#260009", "#6A8781", "#A8ABB4", "#D45262", "#794B61", "#4621B2", "#8DA4DB", "#C7C890", "#6FE9AD", "#A243A7", "#B2B081", "#181B00", "#286154", "#4CA43B", "#6A9573", "#A8441D", "#5C727B", "#738671", "#D0CFCB", "#897B77", "#1F3F22", "#4145A7", "#DA9894", "#A1757A", "#63243C", "#ADAAFF", "#00CDE2", "#DDBC62", "#698EB1", "#208462", "#00B7E0", "#614A44", "#9BBB57", "#7A5C54", "#857A50", "#766B7E", "#014833", "#FF8347", "#7A8EBA", "#274740", "#946444", "#EBD8E6", "#646241", "#373917", "#6AD450", "#81817B", "#D499E3", "#979440", "#011A12", "#526554", "#B5885C", "#A499A5", "#03AD89", "#B3008B", "#E3C4B5", "#96531F", "#867175", "#74569E", "#617D9F", "#E70452", "#067EAF", "#A697B6", "#B787A8", "#9CFF93", "#311D19", "#3A9459", "#6E746E", "#B0C5AE", "#84EDF7", "#ED3488", "#754C78", "#384644", "#C7847B", "#00B6C5", "#7FA670", "#C1AF9E", "#2A7FFF", "#72A58C", "#FFC07F", "#9DEBDD", "#D97C8E", "#7E7C93", "#62E674", "#B5639E", "#FFA861", "#C2A580", "#8D9C83", "#B70546", "#372B2E", "#0098FF", "#985975", "#20204C", "#FF6C60", "#445083", "#8502AA", "#72361F", "#9676A3", "#484449", "#CED6C2", "#3B164A", "#CCA763", "#2C7F77", "#02227B", "#A37E6F", "#CDE6DC", "#CDFFFB", "#BE811A", "#F77183", "#EDE6E2", "#CDC6B4", "#FFE09E", "#3A7271", "#FF7B59", "#4E4E01", "#4AC684", "#8BC891", "#BC8A96", "#CF6353", "#DCDE5C", "#5EAADD", "#F6A0AD", "#E269AA", "#A3DAE4", "#436E83", "#002E17", "#ECFBFF", "#A1C2B6", "#50003F", "#71695B", "#67C4BB", "#536EFF", "#5D5A48", "#890039", "#969381", "#371521", "#5E4665", "#AA62C3", "#8D6F81", "#2C6135", "#410601", "#564620", "#E69034", "#6DA6BD", "#E58E56", "#E3A68B", "#48B176", "#D27D67", "#B5B268", "#7F8427", "#FF84E6", "#435740", "#EAE408", "#F4F5FF", "#325800", "#4B6BA5", "#ADCEFF", "#9B8ACC", "#885138", "#5875C1", "#7E7311", "#FEA5CA", "#9F8B5B", "#A55B54", "#89006A", "#AF756F", "#2A2000", "#7499A1", "#FFB550", "#00011E", "#D1511C", "#688151", "#BC908A", "#78C8EB", "#8502FF", "#483D30", "#C42221", "#5EA7FF", "#785715", "#0CEA91", "#FFFAED", "#B3AF9D", "#3E3D52", "#5A9BC2", "#9C2F90", "#8D5700", "#ADD79C", "#00768B", "#337D00", "#C59700", "#3156DC", "#944575", "#ECFFDC", "#D24CB2", "#97703C", "#4C257F", "#9E0366", "#88FFEC", "#B56481", "#396D2B", "#56735F", "#988376", "#9BB195", "#A9795C", "#E4C5D3", "#9F4F67", "#1E2B39", "#664327", "#AFCE78", "#322EDF", "#86B487", "#C23000", "#ABE86B", "#96656D", "#250E35", "#A60019", "#0080CF", "#CAEFFF", "#323F61", "#A449DC", "#6A9D3B", "#FF5AE4", "#636A01", "#D16CDA", "#736060", "#FFBAAD", "#D369B4", "#FFDED6", "#6C6D74", "#927D5E", "#845D70", "#5B62C1", "#2F4A36", "#E45F35", "#FF3B53", "#AC84DD", "#762988", "#70EC98", "#408543", "#2C3533", "#2E182D", "#323925", "#19181B", "#2F2E2C", "#023C32", "#9B9EE2", "#58AFAD", "#5C424D", "#7AC5A6", "#685D75", "#B9BCBD", "#834357", "#1A7B42", "#2E57AA", "#E55199", "#316E47", "#CD00C5", "#6A004D", "#7FBBEC", "#F35691", "#D7C54A", "#62ACB7", "#CBA1BC", "#A28A9A", "#6C3F3B", "#FFE47D", "#DCBAE3", "#5F816D", "#3A404A", "#7DBF32", "#E6ECDC", "#852C19", "#285366", "#B8CB9C", "#0E0D00", "#4B5D56", "#6B543F", "#E27172", "#0568EC", "#2EB500", "#D21656", "#EFAFFF", "#682021", "#2D2011", "#DA4CFF", "#70968E", "#FF7B7D", "#4A1930", "#E8C282", "#E7DBBC", "#A68486", "#1F263C", "#36574E", "#52CE79", "#ADAAA9", "#8A9F45", "#6542D2", "#00FB8C", "#5D697B", "#CCD27F", "#94A5A1", "#790229", "#E383E6", "#7EA4C1", "#4E4452", "#4B2C00", "#620B70", "#314C1E", "#874AA6", "#E30091", "#66460A", "#EB9A8B", "#EAC3A3", "#98EAB3", "#AB9180", "#B8552F", "#1A2B2F", "#94DDC5", "#9D8C76", "#9C8333", "#94A9C9", "#392935", "#8C675E", "#CCE93A", "#917100", "#01400B", "#449896", "#1CA370", "#E08DA7", "#8B4A4E", "#667776", "#4692AD", "#67BDA8", "#69255C", "#D3BFFF", "#4A5132", "#7E9285", "#77733C", "#E7A0CC", "#51A288", "#2C656A", "#4D5C5E", "#C9403A", "#DDD7F3", "#005844", "#B4A200", "#488F69", "#858182", "#D4E9B9", "#3D7397", "#CAE8CE", "#D60034", "#AA6746", "#9E5585", "#BA6200" }; 

Ho creato una pagina online per generare proceduralmente colors visivamente distinti:
http://phrogz.net/css/distinct-colors.html

A differenza di altre risposte qui che attraversano uniformsmente lo spazio RGB o HSV (dove c’è una relazione non lineare tra i valori degli assi e le differenze percettive ), la mia pagina usa l’algoritmo CMI (I: c) della distanza colore standard per evitare che due colors siano troppo visivamente vicino.

La scheda finale della pagina ti consente di ordinare i valori in diversi modi, e quindi di interlacciali (ordine casuale) in modo da ottenere colors ben distinti posizionati l’uno accanto all’altro.

Al momento della stesura di questo, funziona bene solo con Chrome e Safari, con uno shim per Firefox; utilizza i cursori di input dell’intervallo HTML5 nell’interfaccia, che IE9 e Firefox non supportano ancora in modo nativo.

Penso che lo spazio HSV (o HSL) abbia più opportunità qui. Se non ti dispiace la conversione in più, è abbastanza facile passare attraverso tutti i colors semplicemente ruotando il valore di tonalità. Se ciò non è sufficiente, è ansible modificare i valori di Saturazione / Valore / Luminosità e ripetere la rotazione. Or, you can always shift the Hue values or change your “stepping” angle and rotate more times.

There’s a flaw in the previous RGB solutions. They don’t take advantage of the whole color space since they use a color value and 0 for the channels:

 #006600 #330000 #FF00FF 

Instead they should be using all the possible color values to generate mixed colors that can have up to 3 different values across the color channels:

 #336600 #FF0066 #33FF66 

Using the full color space you can generate more distinct colors. For example, if you have 4 values per channel, then 4*4*4= 64 colors can be generated. With the other scheme, only 4*7+1= 29 colors can be generated.

If you want N colors, then the number of values per channel required is: ceil(cube_root(N))

With that, you can then determine the possible (0-255 range) values (python):

 max = 255 segs = int(num**(Decimal("1.0")/3)) step = int(max/segs) p = [(i*step) for i in xrange(segs)] values = [max] values.extend(p) 

Then you can iterate over the RGB colors (this is not recommended):

 total = 0 for red in values: for green in values: for blue in values: if total <= N: print color(red, green, blue) total += 1 

Nested loops will work, but are not recommended since it will favor the blue channel and the resulting colors will not have enough red (N will most likely be less than the number of all possible color values).

You can create a better algorithm for the loops where each channel is treated equally and more distinct color values are favored over small ones.

I have a solution, but didn't want to post it since it isn't the easiest to understand or efficient. But, you can view the solution if you really want to.

Here is a sample of 64 generated colors: 64 colors

I needed the same functionality, in a simple form.

What I needed was to generate as unique as possible colors from an an increasing index value.

Here is the code, in C# (Any other language implementation should be very similar)

The mechanism is very simple

  1. A pattern of color_writers get generated from indexA values from 0 to 7.

  2. For indices < 8, those colors are = color_writer[indexA] * 255.

  3. For indices between 8 and 15, those colors are = color_writer[indexA] * 255 + (color_writer[indexA+1]) * 127

  4. For indices between 16 and 23, those colors are = color_writer[indexA] * 255 + (color_writer[indexA+1]) * 127 + (color_writer[indexA+2]) * 63

And so on:

Rand Color Generator

  private System.Drawing.Color GetRandColor(int index) { byte red = 0; byte green = 0; byte blue = 0; for (int t = 0; t <= index / 8; t++) { int index_a = (index+t) % 8; int index_b = index_a / 2; //Color writers, take on values of 0 and 1 int color_red = index_a % 2; int color_blue = index_b % 2; int color_green = ((index_b + 1) % 3) % 2; int add = 255 / (t + 1); red = (byte)(red+color_red * add); green = (byte)(green + color_green * add); blue = (byte)(blue + color_blue * add); } Color color = Color.FromArgb(red, green, blue); return color; } 

Note: To avoid generating bright and hard to see colors (in this example: yellow on white background) you can modify it with a recursive loop:

  int skip_index = 0; private System.Drawing.Color GetRandColor(int index) { index += skip_index; byte red = 0; byte green = 0; byte blue = 0; for (int t = 0; t <= index / 8; t++) { int index_a = (index+t) % 8; int index_b = index_a / 2; //Color writers, take on values of 0 and 1 int color_red = index_a % 2; int color_blue = index_b % 2; int color_green = ((index_b + 1) % 3) % 2; int add = 255 / (t + 1); red = (byte)(red + color_red * add); green = (byte)(green + color_green * add); blue = (byte)(blue + color_blue * add); } if(red > 200 && green > 200) { skip_index++; return GetRandColor(index); } Color color = Color.FromArgb(red, green, blue); return color; } 

I would start with a set brightness 100% and go around primary colors first:

FF0000, 00FF00, 0000FF

then the combinations

FFFF00, FF00FF, 00FFFF

next for example halve the brightness and do same round. There’s not too many really clearly distinct colors, after these I would start to vary the line width and do dotted/dashed lines etc.

I implemented this algorithm in a shorter way

 void ColorValue::SetColorValue( double r, double g, double b, ColorType myType ) { this->c[0] = r; this->c[1] = g; this->c[2] = b; this->type = myType; } DistinctColorGenerator::DistinctColorGenerator() { mFactor = 255; mColorsGenerated = 0; mpColorCycle = new ColorValue[6]; mpColorCycle[0].SetColorValue( 1.0, 0.0, 0.0, TYPE_RGB); mpColorCycle[1].SetColorValue( 0.0, 1.0, 0.0, TYPE_RGB); mpColorCycle[2].SetColorValue( 0.0, 0.0, 1.0, TYPE_RGB); mpColorCycle[3].SetColorValue( 1.0, 1.0, 0.0, TYPE_RGB); mpColorCycle[4].SetColorValue( 1.0, 0.0, 1.0, TYPE_RGB); mpColorCycle[5].SetColorValue( 0.0, 1.0, 1.0, TYPE_RGB); } //---------------------------------------------------------- ColorValue DistinctColorGenerator::GenerateNewColor() { int innerCycleNr = mColorsGenerated % 6; int outerCycleNr = mColorsGenerated / 6; int cycleSize = pow( 2, (int)(log((double)(outerCycleNr)) / log( 2.0 ) ) ); int insideCycleCounter = outerCycleNr % cyclesize; if ( outerCycleNr == 0) { mFactor = 255; } else { mFactor = ( 256 / ( 2 * cycleSize ) ) + ( insideCycleCounter * ( 256 / cycleSize ) ); } ColorValue newColor = mpColorCycle[innerCycleNr] * mFactor; mColorsGenerated++; return newColor; } 

You could also think of the color space as all combinations of three numbers from 0 to 255, inclusive. That’s the base-255 representation of a number between 0 and 255^3, forced to have three decimal places (add zeros on to the end if need be.)

So to generate x number of colors, you’d calculate x evenly spaced percentages, 0 to 100. Get numbers by multiplying those percentages by 255^3, convert those numbers to base 255, and add zeros as previously mentioned.

Base conversion algorithm, for reference (in pseudocode that’s quite close to C#):

 int num = (number to convert); int baseConvert = (desired base, 255 in this case); (array of ints) nums = new (array of ints); int x = num; double digits = Math.Log(num, baseConvert); //or ln(num) / ln(baseConvert) int numDigits = (digits - Math.Ceiling(digits) == 0 ? (int)(digits + 1) : (int)Math.Ceiling(digits)); //go up one if it turns out even for (int i = 0; i < numDigits; i++) { int toAdd = ((int)Math.Floor(x / Math.Pow((double)convertBase, (double)(numDigits - i - 1)))); //Formula for 0th digit: d = num / (convertBase^(numDigits - 1)) //Then subtract (d * convertBase^(numDigits - 1)) from the num and continue nums.Add(toAdd); x -= toAdd * (int)Math.Pow((double)convertBase, (double)(numDigits - i - 1)); } return nums; 

You might also have to do something to bring the range in a little bit, to avoid having white and black, if you want. Those numbers aren't actually a smooth color scale, but they'll generate separate colors if you don't have too many.

This question has more on base conversion in .NET.

for getting nth colour. Just this kind of code would be enough. This i have use in my opencv clustering problem. This will create different colours as col changes.

 for(int col=1;col 

You could get a random set of your 3 255 values and check it against the last set of 3 values, making sure they are each at least X away from the old values before using them.

OLD: 190, 120, 100

NEW: 180, 200, 30

If X = 20, then the new set would be regenerated again.